Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Objective. Neural signals in residual muscles of amputated limbs are frequently decoded to control powered prostheses. Yet myoelectric controllers assume muscle activity of residual muscle is similar to that of intact muscle. This study sought to understand potential changes to motor unit (MU) properties after limb amputation. Approach. Six people with unilateral transtibial amputation were recruited. Surface electromyogram (EMG) of residual and intact tibialis anterior (TA) and gastrocnemius (GA) muscles were recorded while subjects traced profiles targeting up to 20 and 35% of maximum activation for each muscle (isometric for intact limbs). EMG was decomposed into groups of motor unit (MU) spike trains. MU recruitment thresholds, action potential amplitudes (MU size), and firing rates were correlated to model Henneman’s size principle, the onion-skin phenomenon, and rate-size associations. Organization (correlation) and modulation (rates of change) of relations were compared between intact and residual muscles. Main results. The residual TA exhibited significantly lower correlation and flatter slopes in the size principle and onion-skin, and each outcome covaried between the MU relations. The residual GA was unaffected for most subjects. Subjects trained prior with myoelectric prostheses had minimally affected slopes in the TA. Rate-size association correlations were preserved, but both residual muscles exhibited flatter decay rates. Significance. We showed peripheral neuromuscular damage also leads to spinal-level functional reorganization. Our findings suggest models of MU recruitment and discharge patterns for residual muscle EMG generation need reparameterization to account for disturbances observed. In the future, tracking MU pool adaptations may also provide a biomarker of neuromuscular control to aid training with myoelectric prostheses.more » « less
-
Objective: In this study, we aimed to develop a novel electromyography (EMG)-based neural machine interface (NMI), called the Neural Network-Musculoskeletal hybrid Model (N2M2), to decode continuous joint angles. Our approach combines the concepts of machine learning and musculoskeletal modeling. Methods: We compared our novel design with a musculoskeletal model (MM) and 2 continuous EMG decoders based on artificial neural networks (ANNs): multilayer perceptrons (MLPs) and nonlinear autoregressive neural networks with exogenous inputs (NARX networks). EMG and joint kinematics data were collected from 10 non-disabled and 1 transradial amputee subject. The offline performance tested across 3 different conditions (i.e., varied arm postures, shifted electrode locations, and noise-contaminated EMG signals) and online performance for a virtual postural matching task was quantified. Finally, we implemented the N2M2 to operate a prosthetic hand and tested functional task performance. Results: The N2M2 made more accurate predictions than the MLP in all postures and electrode locations (p < 0.003). For estimated MCP joint angles, the N2M2 was less sensitive to noisy EMG signals than the MM or NARX network with respect to error (p < 0.032) as well as the NARX network with respect to correlation (p = 0.007). Additionally, the N2M2 had better online task performance than the NARX network (p ≤ 0.030). Conclusion: Overall, we have found that combining the concepts of machine learning and musculoskeletal modeling has resulted in a more robust joint kinematics decoder than either concept individually. Significance: The outcome of this study may result in a novel, highly reliable controller for powered prosthetic hands.more » « less
An official website of the United States government
